当前位置:首页 > 教学文书 > 教案

轴对称图形教案

时间:2026-02-17 17:33:16
轴对称图形教案

轴对称图形教案

作为一名专为他人授业解惑的人民教师,时常需要编写教案,教案有助于学生理解并掌握系统的知识。我们该怎么去写教案呢?以下是小编帮大家整理的轴对称图形教案,希望能够帮助到大家。

轴对称图形教案1

教学目标:

1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。

2、让学生在学习的过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增强学习数学的兴趣。

教学重难点:

让学生通过折纸等方法确定轴对称图形的对称轴,会画出简单轴对称图形的对称轴。

教学准备:

教师:多媒体教学课件,白纸、长方形纸、正方形纸各一张,梯形和三角形。

学生:白纸、长方形纸、正方形纸各一张。

教学对象的分析:

这部分内容主要通过折纸等方法确定轴对称图形的对称轴,进一步体会轴对称的特征。学生在前面已经的学习中,已经知道了一个图形对折,折痕两边完全重合的图形是轴对称图形,并且认识了对称轴。所以针对这一具体内容,课的一开始就通过撕纸玩轴对称图形,学生对这一内容非常感兴趣。

教学过程:

一、“玩”对称,谈话激趣

谈话:如果给你一张纸,你打算怎么玩这张纸?……你想不想知道老师是怎么玩这张纸?看好了,先对折,对折后有一条折痕(板书:折痕),然后从折痕处撕开。怎么样,想试一试吗?(把教师的作品贴在黑板上)

二、自主探究轴对称图形的对称轴。

1、仔细观察你的作品,它是一个什么图形?(我的图形是轴对称图形)(有一条线,有一条折痕,两边完全一样,完全重合)板书:轴对称图形

提问:为什么你觉得你的图形是轴对称图形呢?(对折后两边能完全重合的图形叫做轴对称图形)

2、谈话:轴对称图形中间都有一条(折痕),而折痕所在的直线就是这个图形的对称轴,(板书:折痕所在的直线叫对称轴)。

提问:折痕所在的直线叫对称轴,那说明对称轴是一条什么?(直线)直线有什么特征?(无限延长)那么对称轴怎么画呢?

谈话:画对称轴的时候我们一般用点划线来表示。(板书:点划线)也就是先画一点再画一横,由于对称轴是一条直线,并且是无限延长的,所以我们要把这条点划线分别向上向下延长。

3、你能像老师这样在你的作品上画出对称轴吗?画好了吗?画好后同座位之间相互看看。

4、没想到吧,就这么一张白纸,简单的一折,一撕,居然创造出了数学上的轴对称图形。其实轴对称图形离咱们并不遥远。

5、教学找长方形的对称轴

1) 这是一张长方形的纸,如果让你找出这个长方形纸的所有对称轴,你准备怎么办?(对折)你赞同吗?那咱们就动手折一折并画出它的对称轴吧。

2)指名到讲台前展示自己的折法和画法。

3)通过对折,我们发现了长方形只有几条对称轴?(两条)

4)刚才我们用折纸的方法找到了长方形纸的两条对称轴,(出示黑板上画好的一个长方形),这儿也有一个长方形,画在黑板上的长方形还能对折吗?如果要你画出它的对称轴,你有还方法吗?小组内讨论讨论。指名说一说。

(先量出长方形对边的中点再连线)提问:你是怎么找到对边中点的?(量一量)谈话:我告诉你这个长方形的长是30厘米,怎么找这条边的中点?15厘米处。这条边的中点跟上面的一样。然后把两个中点用点划线连起来。

提问:对称轴找完了吗?请你继续用这种方法找完长方形其他的对称轴。

5)让学生在书上画一画。画好后提醒学生:画好的同学把老师刚刚画的这条对称轴也画上去。

提问:你一共画了几条对称轴?

由此可见,不管是长方形纸还是长方形的图,它都只有两条对称轴。

6、教学正方形的对称轴

1)研究了长方形,你觉得我们下面要研究什么图形了?(教师拿出正方形的纸)拿出正方形纸,请你用刚才研究长方形的方法,找到正方形所有的对称轴并画出各条对称轴。

2)通过刚才的研究,你能画出几条对称轴?(四条)哪四条?斜的这条你是怎么找到的?你们和他找的一样吗?原来老师和你们找的也是一样的,演示课件,是这四条吗?

3)现在我们知道了正方形有几条对称轴?(正方形有四条对称轴)和长方形相比怎么样啦?(比长方形多)多几条?哪两条?(斜的两条)

三、巩固深化,拓展延伸。

完成想想做做1

1、通过刚才的活动,我们找到了长方形和正方形的对称轴,知道了长方形有2条对称轴,正方形有4条对称轴。出示书本62页想想做做第一题中的所有图形。这儿有很多我们学过的图形,看看哪些同学能一眼就找到其中的轴对称图形,你觉得它是轴对称图形的用铅笔在上面轻轻地打上一个勾。学生独立判断。

2、你判断好了吗?你觉得怎么去检验你的判断是对的还是错的?(折一折)拿出事先准备好的这些图形折一折,如果是轴对称图形的,请你在书上画出它的对称轴。

3、学生动手操作,教师巡视,集体反馈交流。

谈话:老师发现很多同学都已经有了自己的观点,现在机会只有六个,每个同学可以选择你最有把握的一个,说一说它是不是轴对称图形,如果是的,有几条?

4、谈话:通过刚才的活动,大家都能准确的判断这6个图形是不是轴对称图形,但是,吉老师觉得心里有话要说,不知道同学们心里有没有话要说。我特别想说的是,就以梯形为例吧,1号图是一个什么梯形?(等腰梯形)虽然这个等腰梯形是一个轴对称图形,但是……不是每个梯形都是轴对称图形,比如6号梯形还有我手里的这个梯形,他们都不是轴对称图形。看来一般的梯形不是轴对称图形,只有等腰梯形才是轴对称图形?好了,我的话说完了,剩下的图形你们来说吧。

完成想想做做2

1、我给大家又带来了一些美丽的图形。下面的图形都是轴对称图形吗?是轴对称图形的在下面画“√”。独立完成,指名回答,你来说一说哪些图形是轴对称图形。

2、出示第一个图形。这个图形有几条对称轴呢?四人一组讨论。指名回答,那你能把它画出来吗?和老师画的一样吗?其他的两个图你能找到他们的对称轴吗?

3、学生独立完成第二、第三个图形。集体交流。

4、第二个图你找到了几条对称轴?第三个呢?

完成想想做做第4题。

1、出示前3个图形,先仔细观察题中的三个图分别是什么图形?如果学生说第一个图形是三角形,要追问是什么样的三角形,(等边三角形又叫正三边形)如果学生说第三个图形是五边形,谈话:这个图形不是普通的五边形,它的5条边相等,它是正五边形,2、这3个图形各有几条对称轴呢?你能在书上画一画吗?学生在书上画 ……此处隐藏15125个字……/p>

师:请同学们拿出一张正方形的纸,先折一折,再画一画,看自己在这张正方形纸上最多能画出几条对称轴。

师:你是怎样画的?画了几条?

多媒体出示:

师:为什么长方形对角线所在的直线不是长方形的对称轴,而正方形对角线所在的直线是正方形的对称轴呢?

生1:因为沿长方形对角线对折后,两边不能完全重合,所以这条线不是长方形的对称轴;而正方形沿对角线对折后,两边能完全重合,所以这条线是正方形的对称轴。(学生边说边演示)

生2:老师,我还知道为什么。因为长方形只是对边相等,邻边不相等,所以沿对角线对折后,两边不会完全重合;而正方形是四条边都相等,所以沿对角线对折后,两边能完全重合。

师:你很善于观察与思考!正因为如此,正方形有4条对称轴,而长方形只有2条对称轴。

[评析:让学生将长方形纸对折,打开后发现多了条折痕,然后以这条折痕为切入点认识对称轴,引导学生进行操作、猜想、比较、探究、交流等活动,使学生有效地认识了对称轴的特征,学会了对折后沿折痕画出对称轴的方法,从而感知到不同的轴对称图形中,对称轴的条数可能是不一样的。]

三、探究提高

1. 完成“想想做做”第1题。

师:请同学们拿出事先准备好的图形(书上115页上的六个图形),折一折,看哪些是轴对称图形,哪些不是轴对称图形。是轴对称图形的,分别画出它的对称轴。

(生答略)

2. 探究在轴对称图形中画对称轴的方法。

师:刚才我们是通过对折的方法找到对称轴的位置,然后沿着折痕描画出对称轴的。可是,很多轴对称图形是不好对折的,比如黑板上的这个长方形好对折吗?

生:不好。

师:那怎么准确地画出黑板上这个长方形的对称轴呢?

生1:先用纸剪下与黑板同样大小的长方形,对折后按在黑板上画出来。

师:是个办法,实在没有法子的时候可以这样去做。

生2:估计一下对称轴的位置,然后画出来。

师:这样行不行呢?

生3:不行,这样画不够准确。

师:有没有既准确又简洁的方法呢?

生4:找中点。

师:找中点?怎么找?请你上来找给大家看。

(生4跑到黑板前,找出长方形一组对边的中点,然后画出了一条对称轴)

师:你们认为他的方法怎么样?

生5:这个方法好。因为通过两点就可以确定一条直线的位置,这样能又快又准地画出对称轴。

师:只要找出一组对边的中点,就能很快地确定对称轴的位置,这确实是个好方法!如果再在这个长方形画出另外一条对称轴,需要找到哪些点?

生6:再找另外一组对边的中点。

生7:也可以将长方形的对角线相连,必定有一个交点,这个交点就是长方形的中心,然后只需要找到一边的中点,将长方形的中心与一边的中点相连就行了。

师:好呀,方法越来越巧妙。

3. 完成“想想做做”的第2题:下面的图形都是轴对称图形吗?是轴对称图形的各有几条对称轴?试着把它们画出来。

(学生各自判断,并画出轴对称图形的对称轴)

师:哪些图案是轴对称图形?(生答略)

师:你在画对称轴时是怎么确定关键的两个点的?每个轴对称图形上分别有几条对称轴?

(分别让学生点出关键的两个点,再画出对称轴)

4. 完成“想想做做”第3题:画出下面每个图形的另一半,使它成为轴对称图形。

师:要画出每个图形的另一半,使它成为一个轴对称图形,有没有什么好的方法?

生1:有,找关键的点!

师:关键的点在哪?怎么找?

(学生讨论交流)

师:谁上来点出来给大家看?

师:这些点有什么特别的地方吗?

生2:都是与原来图形中的关键点相对称。

师:对,只要找到原来图形中关键点的对称点,就能很快画出来了。

5. 完成“想想做做”第4题:先画出下面每个图形的对称轴,再在小组里交流。

师:请大家画出每个图形的对称轴,注意:能画几条就画几条。

师:每个图形各画出了几条对称轴?分别是怎么画出来的?你发现了什么?

生1 :我发现每个图形中每条边的长度都相等。

师:对,它们分别是正三角形、正方形、正五边形、正六边形。

生2:我发现是正几边形,就有几条对称轴。

师:按照这样推断,那正八边形会有几条对称轴?

生:8条。

师:这个推断是否正确呢?大家课后可以动手探究一下。

生3:我还发现一个图形中所有的对称轴都相交于图形的中心。

师:你观察得真仔细!利用这个发现,我们就能又快又准地画出轴对称图形中的多条对称轴了。

[评析:教师大胆放手,让学生通过不同梯度的探究练习,加深学生对轴对称图形的认识,引导学生通过找关键点来画轴对称图形或轴对称图形中的对称轴。在探究过程中,教师注意提供给学生充足的探究时间与空间,重视培养学生解决问题的策略意识,并尊重学生自主选择的权利。在多次充分的交流中,学生的思维发生碰撞;在策略的比较中,促进了学生认知能力的提高。]

四、总结反思

师:这节课我们继续认识了轴对称图形,你有什么新的收获?(生答略)

师:现在看看课始的这几个漂亮的轴对称图形,你能很快判断出它们各有几条对称轴吗?

(蝴蝶图片1条,松树图片1条,花朵图片2条,五角星图片5条)

师:我们身边哪些物体的面是轴对称图形,它们各有几条对称轴?

[评析:通过总结,使学生对学习内容回味无穷。教师让学生说出课始的几张漂亮的轴对称图形中对称轴的条数,并引申到找生活中的轴对称图形及说出这个轴对称图形中对称轴的条数,使学生的学习活动升华到了更高的境界。]

五、创新设计

师:在方格纸上设计一个轴对称图形,并画出它的对称轴。

(生设计,师巡视指导)

师:请设计好的同学将你的作品在小组中交流一下,并比一比,看谁设计的最美观而且有创意。

师:谁愿意上来展示一下自己的作品?

(引导学生欣赏、评价同学的作品)

[评析:“有效的数学学习活动不能单纯地依赖模仿和记忆,只有放手让学生动手操作、自主探索与合作交流,才能有效地提高学生发现问题、分析问题和解决问题的能力。”细节决定成败,本节课的最大特色是教师始终注意放手让学生去探究。尤其是对一些细节上的探究,如找“折痕”、猜“折痕”的名称、找关键点确定对称轴的准确位置……课堂上,学生积极主动,发言踊跃,争论激烈,不断有新的发现。在探究解决问题的过程中,使学生掌握了知识,学会了方法,发展了思维,提高了能力。最后,让学生自主设计一个轴对称图形,并画出它的对称轴,激发了学生的创新意识,学生兴致颇高。下课铃声在欣赏、交流、评议中响起了,然而学生久久不愿离去……]

《轴对称图形教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式